
Travel Companion Architecture Description

CSE 403 – Software Engineering; Spring 2004

Last Updated: 3 May, 2004

[image: image8.emf]T

R

A

V

E

L

C

O

M

P

A

N

I

O

N

C

O

N

F

I

D

E

N

T

I

A

L

Eric Kochhar
(ekochhar@cs)

Abhinav Jain
(jain0122@cs)

Chris R. Baker
(crbaker@cs)

Justin Quan
(jq@cs)

Ben Higgins
(bhiggins@cs)

Jordan Hom
(jhom@cs)

Table of Contents

31
Introduction

31.1
Tools

52
MapPoint

52.1
Services

63
Server

63.1
Components

63.1.1
Database

73.1.2
Web-Service

73.1.2.1
Handheld

73.1.2.2
Website

93.1.2.3
General

103.2
Client Interaction

113.3
Communication Model

123.4
Loading

123.5
Security

134
Handheld Client

134.1
Components

134.1.1
User Interface

134.1.2
Processing Unit

154.1.3
GPS

154.1.4
MapPoint

154.1.5
Server

154.2
Multi-Threading

164.3
Offline Mode

175
Web Client

186
References

1 Introduction

As discussed previously in the LCO, Travel Companion is a service designed to provide location aware services centered on the core concept of live-updated directions. The purpose of this document is to expand on the architecture descriptions of the LCO such that the majority of the architecture decisions are made, or may be easily made, when the implementation process starts.

The top level system architecture consists of a Server exporting a web-service front end for a database, a MapPoint server to provide map information, a web client to handle user input, and finally a handheld client to coalesce the information together for easy user consumption. The figure below illustrates the high-level system architecture.

[image: image1.emf]MS MapPoint

Web Service

Server

Internet

Handheld Client

Web Client

GPS

U

s

e

r

I

n

t

e

r

f

a

c

e

Processing Unit

User Interface

Satellite

Database

Figure 1: Top Level System Architecture

The main components interact with each other via the Internet. The handheld client is connected to the Internet cloud via a dashed line to indicate the wireless connection. Each of the modules within each component, for instance the processing unit within the handheld client, will be explored further in the sections that follow.

Please note that this architecture document is incomplete. Sections will be updated, and new ones created, to reflect and react to any difficulties or deficiencies encountered during development.

1.1 Tools

During the course of this project we will be using the following tools, services, and devices:

· Microsoft Visual Studio .NET (C#): Several team members have C# programming experience, so we believe it may be easier for us to go for a platform that people have proficiency in. During our previous projects, it has been found that C# works well for database management using Microsoft SQL Server.
· Microsoft SQL Server: We will be maintaining databases for every user. Thus, we need a tool to do queries and Microsoft SQL Server goes along well with .NET.

· Microsoft MapPoint: We will be using Microsoft MapPoint’s web services to determine latitude and longitude for a given address. More details are provided in the following section.

· HP Handhelds: Devices donated by Microsoft. They will be used for testing and deploying the Travel Companion service. They will also simulate getting the live coordinates of the user using GPS.

· Microsoft SourceSafe: A tool for managing our code so that all of us have a current version to work on.

· Bugzilla: A bug tracking tool to aid in debugging. (http://www.bugzilla.org/about.html)

2 MapPoint

This section describes the services provided by Microsoft MapPoint that will be used in our Travel Companion application.

2.1 Services

The table below illustrates the services exported from MapPoint that we believe will be useful in implementing the Travel Companion project.

Table 1: Microsoft MapPoint Web Services

	Service
	Function
	Description

	Find
	Find
	returns a list of found geographic entities based on search options

	
	FindAddress
	returns a list of found addresses based on an input address

	
	FindNearRoute
	returns a list of points of interest based on entity type within a specified distance from a route

	
	ParseAddress
	parses a specified address string

	Render
	GetMap
	returns map images, map views, and hot area definitions based on map options

	
	GetBestMapView
	returns the best map view for a selected location or set of locations

	
	ConvertToLatLong
	converts pixel coordinates to latitude and longitude coordinates on a specific map, returning the latitude and longitude for a pixel on a rendered map

	
	ConvertToPoint
	converts latitude and longitude coordinates to pixel coordinates on a specific map, returning the pixel coordinates for a latitude and longitude on a rendered map

	Route
	CalculateRoute
	returns a route based on route segments and specifications

	
	CalculateSimpleRoute
	returns a route based on specified latitude and longitude coordinates

3 Server

This section describes the server architecture for the Travel Companion project.

3.1 Components

3.1.1 Database

We use a SQL database to store all user information including: registration information, friends, points of interest, and reminders. There were a lot of features (tables) we had thought of adding to our database, but we got concerned that with our time limits we wouldn't be able to manage the complexity. In case we need more people on the handheld at the end, we have simplified the database a bit to hopefully allow for people to be moved from the database to the handheld or web client towards the end of development.

[image: image2.png]PointOfInterest
=

user d
place_id
stroet
pt

S
state

£
lattude
longtude
alas
notes
type
private
favorte

FK_PaintOfinterest_Userlnfo

UserInfo

[9]user i@
first_name

last_pame

pass

e mai

street

opt

ity

state

£

adrin

[LLIITITILE

—
FK_Reminders_serlnfo

FK_Friends_UserInfo

user_id
friend_id
alas
notes

Figure 2: Database Schema

The UserInfo table contains the personal information of the user with user_id as the primary key. The Reminders table stores the data for the personal reminders. The Friends table is the friends list and the PointOfInterest table is the list of all the points of interest for the user. The user_id is the primary key, and helps in finding the user from the database. The user_id is also a foreign key to the Friends, Reminder and the PointOfInterest tables. Hence, to find a friend we will need to know the user_id and the friend_id.

3.1.2 Web-Service

This section contains the web-service API prototypes and descriptions. Function names indicate their purpose.
3.1.2.1 Handheld

The functions in this subsection are those to be used specifically by the handheld.

3.1.2.1.1 GetMyName()

bool GetMyName(int user_id,

 string& first_name,

 string& last_name)

3.1.2.1.2 FindMyRemindersWithin()

SqlDataReader FindMyRemindersWithin(int user_id,

 int distance,

 float latitude,

 float longitude)

3.1.2.1.3 KillReminder()

bool KillReminder(int user_id,

 int reminder_id)

3.1.2.2 Website

These functions are those geared for the website.

3.1.2.2.1 AddUser()

bool AddUser(string first_name,

 string last_name,

 string pass,

 string e-mail,

 string street,

 string apt,

 string city,

 string state,

 long zip,

 bool admin)

3.1.2.2.2 UpdateUser()

bool UpdateUser(int user_id,

 string first_name,

 string last_name,

 string pass,

 string e-mail,

 string street,

 string apt,

 string city,

 string state,

 long zip,

 bool admin)

3.1.2.2.3 RemoveUser()

bool RemoveUser(int user_id)

3.1.2.2.4 AddPOI()

bool AddPOI(int user_id,

 string street,

 string apt,

 string city,

 string state,

 long zip,

 float latitude,

 float longitude,

 string alias,

 string notes,

 int type,

 bool private,

 bool favorite)

3.1.2.2.5 UpdatePOI()

bool UpdatePOI(int user_id,

 int place_id,

 string street,

 string apt,

 string city,

 string state,

 long zip,

 float latitude,

 float longitude,

 string alias,

 string notes,

 int type,

 bool private,

 bool favorite)

3.1.2.2.6 RemovePOI()

bool RemovePOI(int user_id,

 int place_id)

3.1.2.2.7 RemoveReminder()

bool RemoveReminder(int user_id,

 int reminder_id)

3.1.2.2.8 AddReminder()

bool AddReminder(int user_id,

string street,

string apt,

string city,

string state,

long zip,

float latitude,

float longitude,

string notes,

datetime start,

datetime expiration)

3.1.2.2.9 UpdateReminder()

bool UpdateReminder(int user_id,

 int reminder_id,

 string street,

 string apt,

 string city,

 string state,

 long zip,

 float latitude,

 float longitude,

 string notes,

 datetime start,

 datetime expiration)

3.1.2.2.10 GetReminderExpiration()

bool GetReminderExpiration(int user_id,

 int reminder_id)

3.1.2.2.11 UpdateReminderExpiration()

bool UpdateReminderExpiration(int user_id,

 int reminder_id,

 datetime expiration)

3.1.2.2.12 FindFriend()

int FindFriend(int my_user_id,

 int username,

 string e-mail)

3.1.2.2.13 RemoveFriend()

bool RemoveFriend(int my_id,

 int friend_id)

3.1.2.2.14 UpdateFriend()

bool UpdateFriend(int my_id,

 int friend_id,

 string alias,

 string notes)

3.1.2.3 General

The prototypes in this subsection are common to both the handheld and the web client.

3.1.2.3.1 AuthenticateUser()

bool AuthenticateUser(string username,

 string password,

 int &user_id)

3.1.2.3.2 FindMyPOI()

SqlDataReader FindMyPOI(int user_id)

3.1.2.3.3 FindFriendsPOI()

SqlDataReader FindFriendsPOI(int user_id)

3.1.2.3.4 FindSpecificFriendsPOI()

SqlDataReader FindSpecificFriendsPOI(int user_id,

 int friend_id)

3.1.2.3.5 FindAllPOI()

SqlDataReader FindAllPOI(int user_id)

3.1.2.3.6 FindMyPOICategory()

SqlDataReader FindMyPOICategory(int user_id,

 int category)

3.1.2.3.7 FindFriendsPOICategory()

SqlDataReader FindFriendsPOICategory(int user_id,

 int category)

3.1.2.3.8 FindSpecificFriendsPOICategory()

SqlDataReader FindSpecificFriendsPOICategory(int user_id,

 int friend_id,

 int category)

3.1.2.3.9 FindAllPOICategory()

SqlDataReader FindAllPOICategory(int user_id,

 int category)

3.1.2.3.10 FindMyReminders()

SqlDataReader FindMyReminders(int user_id)

3.1.2.3.11 FindMyFriends()

SqlDataReader FindMyFriends(int user_id)

3.2 Client Interaction

This section describes a couple scenarios of interaction between the client and the server. Figure 3 below illustrates the interaction during a client login process.

[image: image3.emf]Client

Webservice

Database

ID, Password

Confirmation

ID, Password

Confirmation

Figure 3: Web and Handheld Client Login Data Flow Diagram

The login process will be initiated through the Travel Companion web-service. Similar actions via the web-service will be used by the handheld to retrieve information from the server’s database. This process is illustrated below.

[image: image4.emf]Handheld Client

Webservice

Current Location

Current Location

Friends POI,

My POI,

My Reminders,

Database

Filtered POIs,

Reminders

Figure 4: Handheld Client to Server Data Flow Diagram

3.3 Communication Model

The system is designed in such a way that there will be three kinds of data that will be exchanged between the server and the clients.

First, during the authentication process, the user will enter his user name and password as session variables for the web client. For the handheld client, the email and the password may optionally be stored locally. The handheld application will be responsible for connecting to the server.

After authentication, the web client will request a service and make the function call corresponding to that. For example, if the user wants to add a point of interest, he or she will make the call to the web method with the parameter values. The server will oblige by doing what is requested. The data will be transferred using XML. The user could also send the coordinates of the origin and destination points. The server will return the best route after communicating with MapPoint.

The major communication is going to happen at the handheld front. The handheld will communicate with the GPS system to get real time GPS latitude and longitude coordinates. The handheld will take these coordinates and get a new map from MapPoint periodically, if the current location is outside the previous downloaded map. Once the map is downloaded, the handheld will communicate with the MapPoint system to get the best route. After getting the best route, the handheld will communicate with the server to see if there are any points of interest to the user in the current vicinity or if there are any reminders that have been set for any of the landmarks in the current vicinity. This check will not be continuous but rather periodical. Again, all the data will be transferred in XML.

3.4 Loading

Server load is a major concern in our project. Since all instances of the handheld application and the web site will be communicating through the web services on IISQLSRV, we need the server to be able to handle this load. We have a lot of research to do on this topic because we don’t fully understand how .NET handles multiple simultaneous web service requests, how to do multithreading on a server, and how much resources we would need for multithreading on IISQLSRV.

In the beginning we plan to implement everything without attention to multithreading. Once we have the web services set up, we can think about trying to get multithreading running. This isn’t essential to our project because we won’t have thousands of users trying to run our service. In a real development environment we would have more time and would concern ourselves with server load more. However, we will try to keep extensibility and concurrency in mind during implementation.
3.5 Security

Security is another issue that we will only be going into if we have the time. If our service was to go live, we would need to tightly enforce security. This is particularly an issue because our entire user base would be utilizing handheld devices with wireless connectivity. Given the time we have to develop the whole application, we will probably end up focusing more on the infrastructure and usability then getting bogged down in security details. If we find built-in support for security or libraries to do it with we may to try to integrate it in if we have enough time.

4 Handheld Client

This section describes the handheld client architecture. The handheld client consists of a wireless-enabled HP iPAQ running the Travel Companion software application. The Travel Companion software application consists of a processing unit module and user interface module. The processing unit is the most critical part of the handheld client; the user interface interacts with the handheld client user to view maps and accept input data. In the sections that follow these modules will be explored further.

4.1 Components

This section provides more detail for each of the major components of the handheld client application.

4.1.1 User Interface

The user interface will be responsible for receiving the maps and directions from the processing unit and rendering them on the iPAQ’s screen. Additionally, the user interface will accept data input from the user; this data will consist of pixel coordinates from rendered maps and addresses representing on-the-fly points of interest. Figure 5 below illustrates the data flow of the handheld application in the context of the user interface.

[image: image5.emf]UI MapPoint

Pixel Points,

Addresses

Maps, Coordinates

Live Map,

Directions,

Reminders

Server

Authentication,

Points of Interest

Confirmation

Web Service

Web Service Processing Unit

User/Display

Maps,

Addresses,

Pixel Points

Figure 5: User Interface Data Flow Diagram

As one can see from the diagram above, the user interface has two data sources: the processing unit and user/display. The processing unit will provide current maps for live direction, as well as reminders based on the current location. The UI will be able to immediately render this information on the display for the user. The other data source, the user/display, represents the information received from the user about on-the-fly points of interest and logging into the application. The UI will interact with MapPoint to convert addresses and pixel points (from a rendered map) to the proper coordinates and then pass that information off to the server. Logging into the application will require an authentication process initiated by the handheld client application and will be completed when the server responds with the proper confirmation.

4.1.2 Processing Unit

As mentioned earlier, the processing unit is the central component of the handheld client. The processing unit’s role is to generate the information displayed to the user given three main data stores: MapPoint, GPS, and Server. The processing unit will communicate with MapPoint and the Server via web services. The GPS data store will be local (refer to section 4.1.3 below).

Figure 6 below illustrates the handheld client architecture in the context of the processing unit.

[image: image6.emf]MapPoint Server Processing Unit

GPS

Coordinates, Route

Route,

Maps &

Directions

Current Location,

Radius, Filter

Points of Interest

Coordinates,

Reminders

Current

Location

Live Map,

Directions,

Reminders

Web Service Web Service

UI

Figure 6: Processing Unit Data Flow Diagram

In the figure above the processing unit is the main module of the handheld client. This module is responsible for gathering data from the various sources (GPS, MapPoint, Server) and organizing it in such a way for the user interface (UI) to display it to the user. The GPS unit is responsible for providing the current location of the iPAQ. The server is responsible for providing coordinates for the points of interest and reminders given current location coordinates, radius, and filters. The radius is used to limit the amount of data returned by the server to only those points that are relevant. Filters are used to also limit the data as determined by the user’s preferences. MapPoint provides services to route the given coordinates and render maps based on that route.

The diagram below illustrates the basic execution loop of the processing unit.

[image: image7.emf]ServerWS.getPOI()

ServerWS.getReminders()

GPS.getCurrentLocation()

Processing Unit Execution Loop

MapPointWS.calculateRoute()

MapPointWS.getMap()

UI.updateMap()

Determine radius of interest, apply

necessary filters

Organize coordinates

UI.updateReminders()

Figure 7: Processing Unit Execution

This diagram illustrates the basic execution loop for the processing unit. The frequency of executing this loop will be determined by the bandwidth required and the user’s desired resolution.

4.1.3 GPS

The GPS module is an interface to a hardware device that gets the users current GPS location. In our project the actual hardware GPS device will not exist. Instead, a simulator will be written to provide GPS coordinates. This simulator will be running locally outside of the handheld client and will consist of one interface routine which will be called by the handheld client. Basically, this simulator will be a text parser that reads a list of pre-written coordinates and upon each call to its ‘get’ function will return the next coordinate in the list. This has two main advantages; first, it is simple to write, and second, this simulator will aid in our testing of the system without having to move. The pre-written list will consist of latitude longitude coordinates that been manually extracted from MapPoint.

4.1.4 MapPoint

MapPoint plays a key role in our handheld client architecture. The client application will rely heavily on MapPoint by using it to calculate route (used for live directions update) and map rendering. Both of these tasks will be executed using the provided MapPoint web-services (see section 2 above).

4.1.5 Server

Similar to MapPoint, the server provides a web-service to access information about the current user of the handheld application. Information such as points of interest and reminders will be received from the server. See section 3 above for more details on the server architecture.

4.2 Multi-Threading

There will be two main threads in the handheld client application. One thread will be the processing unit; the other thread will be the user interface. Threading this application is necessary to make the application usable; without threading the user interface would be stalled while the processing unit was updating the current position information and vice versa.

4.3 Offline Mode

When the handheld device is offline it is going to use the last configuration that was downloaded from the server. The client will maintain a cache of the recently used data from the database. An offline device will be able to show the points of interest and reminders for the last set of latitude and longitude coordinates sent to the server. There will be no real time update of directions; the user will also not be able to access any information about his or her friends. No requests will be made to the server. The user will be able to enter data for future requests via the handheld interface and than this information can be sent to the server once the connection is back on again. We will synchronize the client with the server every time the application is run.

It will be somewhat similar to internet explorer temporary files. We will be saving whatever data the user inputs and send it to the server once the connection is on. These temporary files will be deleted once the content has been used or they will be updated.

However, this is also not core functionality.

5 Web Client

The web client will provide an interface to the user to request web services from the server. The web interface will take the information from the user, like information for the user table and reminder tables. That information is used to modify the tables of our database. The basic purpose for our web client is to help the user set up accounts and enter huge amounts of data or in other words just set up the database, while most of the dynamic querying will be done via the hand held client. We have chosen to do it this way because it is very hard to write so much information on the hand held.

The web client will simply talk to the web service interfaces to provide functionality. Beyond this, the architecture has not been solidly defined.
6 References

Information concerning the web services architecture can be found here:

http://msdn.microsoft.com/library/?url=/library/en-us/dnwebsrv/html/webservbasics.asp?frame=true

Additional information concerning Microsoft’s MapPoint may be found here:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mappointsdk/html/mpn35intServices.asp

� EMBED Visio.Drawing.6 ���

Page 17 of 18

Travel Companion Confidential

[image: image9.emf]T

R

A

V

E

L

C

O

M

P

A

N

I

O

N

C

O

N

F

I

D

E

N

T

I

A

L

_1145012709.vsd
�

�

Satellite�

�

�

�

MS MapPoint�

�

�

Web Service�

Server�

Internet�

�

Handheld Client�

Web Client�

GPS�

User Interface�

Processing Unit�

User Interface�

Database�

_1145018434.vsd
Client�

Webservice�

�

Database�

ID, Password�

�

�

Confirmation�

ID, Password�

�

Confirmation�

_1145016998.vsd
TRAVEL COMPANION CONFIDENTIAL�

_1145006914.bin

_1145009679.vsd
MapPoint�

Server�

Processing Unit�

GPS�

�

Coordinates, Route�

Route,
Maps &
Directions�

Current Location,
Radius, Filter�

Points of Interest Coordinates,
Reminders�

Current Location�

UI�

Live Map,
Directions,
Reminders�

Web Service�

Web Service�

_1145011152.vsd
Monitor�

UI�

MapPoint�

Pixel Points,
Addresses�

Maps, Coordinates�

Live Map,
Directions,
Reminders�

Server�

�

Authentication,
Points of Interest�

Confirmation�

Web Service�

Web Service�

Processing Unit�

User/Display�

Maps,
Addresses,
Pixel Points�

_1145008029.vsd
�

ServerWS.getPOI()
ServerWS.getReminders()�

GPS.getCurrentLocation()�

Processing Unit Execution Loop�

MapPointWS.calculateRoute()�

MapPointWS.getMap()�

UI.updateMap()�

Determine radius of interest, apply necessary filters�

Organize coordinates�

UI.updateReminders()�

_1145001071.vsd
Handheld Client�

Webservice�

Filtered POIs,
Reminders�

�

Friends POI,
My POI,
My Reminders,�

Current Location�

�

�

Current Location�

�

Database�

